Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 174: 110374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147781

RESUMO

The enzymes of the mevalonate pathway need to be improved to achieve high yields of isoprenoids in the yeast Saccharomyces cerevisiae. The red yeast Rhodosporidium toruloides produces high levels of carotenoids and may have evolved to carry a naturally high flux of isoprenoids. Enzymes from such yeasts are likely to be promising candidates for improvement. Towards this end, we have systematically investigated the various enzymes of the mevalonate pathway of R. toruloides and custom synthesized, expressed, and evaluated six key enzymes in S. cerevisiae. The two nodal enzymes geranyl pyrophosphate synthase (RtGGPPS) and truncated HMG-CoA reductase (RttHMG) of R. toruloides showed a significant advantage to the cells for isoprenoid production as seen by a visual carotenoid screen. These two were analyzed further, and attempts were also made at further improvement. RtGGPPS was confirmed to be superior to the S. cerevisiae enzyme, as seen from in vitro activity determinations and in vivo production of the heterologous diterpenoid sclareol. Four mutants were created through rational mutagenesis but were unable to improve the activity further. In the case of RttHMG, functional evaluation of the enzyme revealed that it was very unstable despite functioning very well in S. cerevisiae. We succeeded in stabilizing the enzyme through mutation of a conserved serine in the catalytic region, which did not alter the enzyme activity per se. In vivo evaluation of the mutant revealed that it could enable better sclareol yields. Therefore, these two enzymes from the red yeast are excellent candidates for heterologous isoprenoid production.


Assuntos
Acil Coenzima A , Produtos Biológicos , Diterpenos , Terpenos , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Carotenoides/metabolismo , Produtos Biológicos/metabolismo
2.
FEBS Open Bio ; 14(3): 410-425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124687

RESUMO

Isoprenoid biosynthesis has a significant requirement for the co-factor NADPH. Thus, increasing NADPH levels for enhancing isoprenoid yields in synthetic biology is critical. Previous efforts have focused on diverting flux into the pentose phosphate pathway or overproducing enzymes that generate NADPH. In this study, we instead focused on increasing the efficiency of enzymes that generate NADPH. We first established a robust genetic screen that allowed us to screen improved variants. The pentose phosphate pathway enzyme, glucose 6-phosphate dehydrogenase (G6PD), was chosen for further improvement. Different gene fusions of G6PD with the downstream enzyme in the pentose phosphate pathway, 6-phosphogluconolactonase (6PGL), were created. The linker-less G6PD-6PGL fusion displayed the highest activity, and although it had slightly lower activity than the WT enzyme, the affinity for G6P was higher and showed higher yields of the diterpenoid sclareol in vivo. A second gene fusion approach was to fuse G6PD to truncated HMG-CoA reductase, the rate-limiting step and also the major NADPH consumer in the pathway. Both domains were functional, and the fusion also yielded higher sclareol levels. We simultaneously carried out a rational mutagenesis approach with G6PD, which led to the identification of two mutants of G6PD, N403D and S238QI239F, that showed 15-25% higher activity in vitro. The diterpene sclareol yields were also increased in the strains overexpressing these mutants relative to WT G6PD, and these will be very beneficial in synthetic biology applications.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , NADP/metabolismo , Glucose , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...